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Evaluating Coherence of Natural Images by
Smoothness Membership in Besov Spaces

Jorge E. Pinzón, John F. Pierce, Compton J. Tucker, and Molly E. Brown

Abstract—Smoothness membership in Besov spaces ( )
is used to compare the spatial coherence of satellite images.
Smoothness is given by a complexity index computed as the rate
of decay of the approximation error ( ) when the image is
approximated by its -largest quantized wavelet coefficient.
The technique was applied to a set of nine normalized difference
vegetation index (NDVI) time series data as a quantitative quality
measure of spatial coherence. The NDVI data set comprises
different compositing and atmospheric correction techniques.
The estimates of the complexity index give a quantitative measure
of the performance of these techniques that agrees well with
visual evaluation and with the physics of the image collection
process. We demonstrate the maximum value NDVI composites
with Rayleigh, ozone, and water vapor correction consistently
provide the highest spatial coherence among the compositing and
atmospheric correction techniques evaluated. We also show the
complexity index is regionally dependent and is higher in dry
periods than in wet periods where residual cloud interference is
more likely to appear.

Index Terms—Remote sensing, smoothness of image, wavelets.

I. INTRODUCTION

T HE QUALITY assessment of the spatial coherence of nat-
ural images poses a challenge to both theoretical and prac-

tical image processing. To understand spatial coherence for a
particular remote sensing image, one needs to identify artifacts
caused by sensor viewing geometry, physical interference, (e.g.,
cloud contamination), and other atmospheric effects. This must
also be coupled with knowledge of subtle details about approx-
imation, uncertainties at the pixel level, and denoising of this
particular image type.

NDVI images from the National Oceanic and Atmo-
spheric Administration’s (NOAA) advanced very high
resolution radiometer (AVHRR) face a number of formidable
challenges. They are computed as the normalized differ-
ence of the red ( ) and near infra-red ( ) wavelengths:
NDVI . Since its inception for mon-
itoring vegetation [1]–[3], the effects of cloud contamination,
atmospheric scattering, and absorption on the visible and
near-infrared radiances are recognized sources of errors and
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uncertainties [4], [5]. Temporal compositing techniques such as
maximum NDVI were introduced to increase the opportunity
for cloud-free observations and to reduce atmospheric con-
tamination effects [4]. For short compositing periods, where
compositing techniques are of limited benefit, atmospheric
corrections for Rayleigh, ozone, and water vapor effects are
frequently carried out [5]–[7]. However, the spatial coherence
of data in this form is degraded by the built-in noise from the
varying satellite sensing geometry and from residual clouds or
variable atmospheric properties, such as tropospheric aerosols
that remain in the data. These built-in noise effects are the most
challenging factors to correct due to their spatial and temporal
variability.

Woodcocket al. [8], [9] and Juppet al. [10] used variograms
as a means to understand the nature and causes of spatial
variation in images. Their results revealed anisotropy in ground
scenes. However, their characterization was limited by the
difficulty in interpreting the two-dimensional (2-D) variograms,
especially without an appropriate model of ground scenes. They
encouraged further research in order to recover better char-
acterization of spatial variability. In another related attempt,
Cihlaret al. [11] evaluated alternative compositing methods for
producing NDVI. Their goal was to obtain a composite image
that best approximates a single-date image with a constant
near-nadir geometry. The evaluation of the performance of
each method was made by visual examination of uniformity.
Since a composite image is a mosaic of pixel values that come
from different dates and viewing geometries, the evaluation
of the spatial coherence cannot be treated properly using this
ad hoc rule. To characterize image smoothness, one needs to
quantitatively measure errors and uncertainties, a problem that
demands a firm mathematical study [12].

The previously noted approaches implicitly assume a spa-
tially Gaussian smooth behavior. For example, the estimation
of images with white noise is optimized by finding a repre-
sentation that discriminates the image from the noise. In this
case, Shannon’s theory tells us that one should first transform
the image into the Karhunen–Loéve (K–L) domain, which best
encodes a Gaussian process since the resulting coordinates are
independent (actually orthogonal) random variables. This as-
sumption is powerfully and implicitly used in geostatistics ap-
proaches, e.g., kriging. In fact, the different variogram models
used in kriging are derived from Gaussian variogram estima-
tions [8]. However, empirical studies of wavelet transforms of
natural images have uncovered markedly non-Gaussian struc-
tures [13], [14]. For these more complex (non-Gaussian) im-
ages, the Gaussian approximation of the K–L transform is no
longer optimal. In fact, a unique optimal K–L will depend on

0196–2892/01$10.00 © 2001 IEEE



1880 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 9, SEPTEMBER 2001

the particular non-Gaussian spatial structure (or geometry) of
the image [15].

We instead quantify the spatial coherence of an image by
finding its smoothness membership in Besov spaces. This ap-
proach is based on the new mathematical framework and appli-
cations of harmonic analysis developed by Devoreet al. [16],
which resulted in a significant impact on recent efforts in de-
noising [17], [18], compression [16], [19], and registration [20]
of natural images. This theory precisely relates the smoothness
membership in Besov spaces, the so-called complexity index,
with the rate of decay of the approximation error when
the image is approximated by its largest quantized wavelet
coefficients. In ordinary language, we introduce the features of
the theorems that are pertinent to the spatial coherence issues
and set out formally the theorems from DeVoreet al. [16].

We attempt two goals: 1) to gather the properties of Besov
spaces needed for the description of the complexity index in the
general setting of wavelet-based methods. Toward this purpose,
we shall validate and illustrate the effectiveness of the com-
plexity index describing the spatial coherence in a controllable
set of images, i.e., a magnetic resonance image (MRI) at dif-
ferent selected SNRs and 2) to use the complexity index as a
quantitative measure of spatial coherence and evaluate the per-
formance of different image compositing and atmospheric cor-
rection techniques currently used to create long-term NDVI-
AVHRR time series.

II. M ETHODOLOGY

A. Data

We applied to AVHRR data three different atmospheric cor-
rection methods combined with three different 15–day com-
posite procedures and generated nine different NDVI time se-
ries. This data set comprised images obtained from the Global
Inventory Mapping and Monitoring Study (GIMMS) processing
system [21], [23]. There are several AVHRR global land data
sets that have been produced [21]–[24]. In the GIMMS data
processing chain, the user specifies the map projection, com-
positing periods, and methods, atmospheric correction, and cal-
ibration particulars, and the automated processing system gen-
erates the desired rectangular binary file. We have used the Ver-
moteet al.[25] 6S scheme to correct Rayleigh, ozone, and water
vapor effects. Table I presents the sensitivity of NOAA-AVHRR
visible and near infrared channels (channels 1 and 2, respec-
tively) and on the NDVI to atmospheric effects for two different
surface land cover types, i.e., bare soil and deciduous forest.
The three atmospheric correction methods are: no correction
(A0), Rayleigh and ozone correction (A1), and Rayleigh, ozone,
and water vapor correction (A3). Three compositing procedures
were combined with the atmospheric correction methods. At-
mospheric corrections were done on each daily image before the
compositing technique was applied [21], [23]. The set of com-
positing algorithms is as follows.

• Maximum NDVI compositing (VI): this compositing
technique is the standard with AVHRR land data because
it preferentially selects cloud-free and clear pixels [4].
Its main disadvantage is the angular bias toward the

TABLE I
ATMOSPHERICEFFECT ONAVHRR DATA COMPUTED BY THE 6S RADIATIVE

TRANSFERSCHEME, WHEREr AND r ARE REFLECTANCES OF THECOVER

TYPE IN CHANNELS 1 AND 2, RESPECTIVELY. RELATIVE CHANGES ARE

GIVEN IN PERCENT[25]

forward scattering direction that is introduced in selecting
observations [11].

• Minimum channel 1 compositing (M1): this technique is
very sensitive to cloud shadows, which weaken its appli-
cability to land applications [7].

• Maximum thermal channel 5 compositing (T5): this tech-
nique seems to substantially reduce cloud shadows and the
likelihood of choosing off-nadir pixels [11]. However, at
the extremes of the growing season (over Canada), this
method performs poorly due to the similar temperature be-
tween cloudy and cloud-free areas [11]. Cihlaret al. [11]
suggested testing the performance of this method on other
geographic areas, in particular, tropical forests.

We processed one year of data by continent in bimonthly
composites. The result will be a time series of 24 sample im-
ages per method. We have processed continental Africa in 1989
by each of the nine methods and compute not only a global com-
plexity index but also 12 representative regional complexity in-
dexes for each of the 24 9 images in our data set. Regional
complexity indexes are computed in order to address the issue
of spatial coherence sensitivity to phenologic and climatic vari-
ability of land cover type throughout the year. Fig. 1 shows all
13 selected regions, one global and 12 subregions at different
resolutions and locations, in which complexity indexes were
derived. All regions are square shaped and power of two for
application of a fast wavelet transform. Region 2 is the large
square region (512 512) that covers most of the center of
the continent, thereby completely enclosing regions 3, 9, and
11, and partially enclosing regions 8, 9, and 4. Regions 3, 4,
and 5 follow in size (256 256). Region 4 completely en-
closes region 10 and partially region 11. Table II details relevant
seasonal and phenologic characteristics of the 12 subregions.
In particular, regions 8, 3, 9, and 11 represent a gradual tran-
sition from the (July–September) “summer” rainfall region of
the Sahel through the savanna and woodlands, to the equatorial
forest with year-round rains [26]–[29].

B. Wavelets

In this section, we describe the generic multiresolution
method for computing wavelet decompositions. Although
multiresolution wavelet decomposition is at the core of the
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Fig. 1. African regions selected for spatial coherence evaluation.

TABLE II
FUNCTIONAL CHARACTERISTICS OFDETAILED REGIONS IN FIG. 1. ALL

REGIONS ARESQUARE SHAPED AND POWER OFTWO FORAPPLICATION OF A

FAST WAVELET TRANSFORM. COVER TYPES: 1=WOODEDGRASSLAND; 2=
BROADLEAF DECIDUOUSFOREST; 3= BROADLEAF EVERGREENFOREST;

4 = GRASSLAND; AND 5 = BARE GROUND. CHARACTERIZATION IS

TAKEN FROM ANCILLARY SOURCES[26], [27]. LAND COVER IS GIVEN IN

DECREASINGORDER OFCOVERAGE

harmonic analysis efforts [14], [19], and [30]–[32], the mathe-
matical framework for image smoothness classification is not

limited to this case. In fact, the wavelet representation offers
different choices for the transform and filters that could be
tuned to specific spatial structures (or geometries) of the image
for its optimal representation [13], [15], [33], and [34], .

Multiresolution wavelet analysis looks at an image or signal
at different spatial scales producing a sequence of approxima-
tions of the original at each resolution. Starting with the orig-
inal image , successive convolutions with a filter de-
rived from a scaling function produce smoothed data
at each resolution. The signal difference between two con-
secutive resolutions provide the wavelet coefficients ,

, , and the set of all for each
resolution constitutes a wavelet plane. The original image can
be reconstructed by addition of all wavelet planes with the last
smooth plane, . This can be expressed as

(1)
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Fig. 2. Column 1: gray-scale MRI brain scan at different SNRs (pixel variance/noise power): 50 (original), 10, 5, and 1); column 2: histograms of normalized
MRI gray values; column 3: locations of highest 5% quantized wavelet coefficients; column 4: coherence plots with rate of decay�; and column 5: reconstruction
using highest 5% quantized wavelet coefficients.

Thus, the wavelet approach models the image as the com-
bination of a large selection of different waves that could be
tuned for a better approximation of the coherence, and details
of the image. This tuning feature makes multiresolution wavelet
analysis an attractive framework to study image coherence. It is
based on the properties used for image compression and noise
removal. If an image is noisy, the wavelet coefficients will have
a noise component as well. Coherent components of the signal
will be concentrated in a small number of coefficients in the
wavelet domain. The noise energy is expected to have negligible
wavelet coefficients and could be filtered out. Thus, the con-
struction of wavelets begins by designing the filters that should
be optimized to produce a minimum of nonnegligible wavelet
coefficients. This depends mostly on the regularity of the image,
the number of vanishing moments of the filter and the size of
its support [35], [15]. We have used a Coiflet wavelet with four

vanishing moments to characterize the variability in smoothness
of the NDVI imagery. In fact, NDVI imagery comprises images
having high regularity between few cloud singularities to im-
ages with an increasing density of cloud singularities. For the
first set of images, a wavelet with many vanishing moments will
approximate well its smoothness. For the last, we should fur-
ther decrease the size of its support at the expense of reducing
the number of vanishing moments and increasing the number of
nonnegligible wavelet coefficients. We used the public domain
software package, Wavelab, for the wavelet analysis, and in par-
ticular, to generate Coiflet wavelets [36].

C. Smoothness Spaces

Recently, Devoreet al. [16], [14], and Donoho and John-
stone [18] have introduced a new way to look at the compres-
sion and estimation of natural noisy images. They observed
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Fig. 3. Global and regional average complexity indexes by month of each compositing with no correction (AO, dotted line), Rayleigh and ozone (A1, dashdot
line) and Rayleigh, ozone, and water vapor (A3, solid line) atmospheric correction technique.

that when an image is approximated by itslargest quantized
wavelet coefficients, the approximation error is pro-
portional to . They have shown that the rate of decay
characterizes well the smoothness of the image, since it guar-
antees its membership in the Besov space , where

. See the Appendix
for definitions.

Roughly speaking, functions in have “deriva-
tives” in . Since , the parameter can measure
more subtle gradations in smoothness [16]. Specifically, the im-
provement resides in the difference between linear and non-
linear wavelet approximation. An imageis approximated by

in a linear fashion, selecting its coarsest level quantized
wavelet coefficients. On the other hand, in a nonlinear approxi-
mation is given by choosing its largest quantized wavelet
coefficients. In this paper, quantization is given by the nonlinear

approach

otherwise.

Bounds for the approximation error in a linear approach are
rather sharp

i.e., no numbers or can be substituted in the
norm of on the right side [16]. On the other hand, bounds for
a nonlinear method are more flexible

where is defined as before. More images can be ap-
proximated to order with a nonlinear approach, since it
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TABLE III
SEASONAL AVERAGE AND STANDARD DEVIATION OF THE COMPLEXITY INDEX � OF EACH COMPOSITINGTECHNIQUE WITH NO CORRECTION(AO), RAYLEIGH

AND OZONE (A1), AND RAYLEIGH, OZONE, AND WATER VAPOR (A3) ATMOSPHERICCORRECTIONS INREGIONSR3, R4,AND R5. THE HIGHEST

� VALUES BY SEASON ARE BOLDED IN EACH ROW. THE SMALLEST � VALUES BY METHOD AND REGION ARE UNDERLINED IN

EACH COLUMN. THE MEAN VALUE � AND ITS STD ARE SCALED BY 100

only requires that have derivatives in and not in .
Moreover, if an image has at mostderivatives in and
derivatives in , then because [16].

In summary, the decay of the error is related to
by the following theorem.

Theorem 1: Thenonlinearapproximationerror
is , if and only if, belongs to .

Devoreet al. [16] and Mallat [15] provide a complete proof
of the theorem and add other important material for applications
in image compression. In practice, in a log–log graph of the
approximation error versus largest nonzero coefficients, the data
should lie on a straight line with slope . The rate of decay

will be computed from a linear least square fit. In this sense,
we say that the image smoothness is at most.

D. An Example

As an illustration of the complexity index, we took an
original MRI and added Gaussian noise at three different SNR
levels (SNR 10, SNR 5, and SNR 1). SNR is computed
as the ratio between image variance and noise power. The MRI
(with an original SNR 50) was included in the Wavelab
package [36] and originally obtained from the National Institute
of Health (NIH) image program, a public domain software
package distributed freely by the NIH.

Coiflet wavelet decomposition was computed on each of the
images and the rate of decaywere derived from a least square
fit of the approximation error versus largest nonzero coef-
ficients. Fig. 2 presents the results of the coherence complexity

curves corresponding to each of the MRI noisy images. We show
the histograms of each normalized MRI gray value before the
wavelet decomposition. Although the original structure of the
image is gradually degraded until a Gaussian shape distribu-
tion is obtained, the main low frequency components maintain
a recognizable MRI structure. The location of 5% highest quan-
tized wavelet coefficients in a multiresolution plane are shown
in column 3. Basically, the low frequency content (smoothest
part) of the image is the main contributor to this 5% approxima-
tion. The main effect of adding noise into the image is the notice-
able spread of this 5% in the wavelet multiresolution plane. In
particular, the increasing contribution of high frequency com-
ponents makes the image less coherent. The graphs of the ap-
proximation error (column 4), from which the complexity index

is derived, summarize the previous observations. The rate of
decay decreases with SNR from 0.46 to 0.09. The curve of
the approximation error becomes flatter as SNR decreases, re-
sulting in difficulties to reconstruct the details of noisy images.
In fact, column 5 shows the reconstruction obtained from the 5%
approximation. This result shows the potential to characterize
an image compression or noise reduction algorithm in terms of
Besov spaces theory as Devoreet al.[16], [14] and Donoho and
Johnstone [18] suggested.

III. RESULTS

Applying the complexity index to compare the spatial coher-
ence of NDVI images derived from the aforementioned com-
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Fig. 4. Regional complexity indexes for maximum NDVI 15 day compositing with no correction (AO, dotted line), Rayleigh and ozone (A1, dashdot line) and
Rayleigh, ozone and water vapor (A3, solid line) atmospheric correction technique.

posite and atmospheric correction techniques, we found that
ranges from 0.1 to 0.5. This variation could be linked to climatic
and phenologic regional and seasonal characteristics as follows.

Fig.3showsthetemporalvariationoftwoglobalcomplexityin-
dexes.The firstone isderived fromdirectcomputationof,when
regionR1(continentalAfrica) is usedas input image.Thesecond

is the average of the complexity indexes for subregions R2 to
R13. As indicated in the previous section, highvalues iden-
tify images with higher spatial coherence. In this case, as Fig. 3
shows, the maximum NDVI composite technique (VI) with full
atmospheric correction (A3) is the method that consistently pro-
vides the highest spatial coherence, even at individual regional
levels (results not shown). This is consistent with the findings of
Holbenetal.[4],whoshowedthat themaximumNDVIcomposite
technique (VI) efficiently reduces atmospheric effects and cloud
contamination making the technique appropriate for vegetation

studies. It also shows that theaveraged from subregions R2 to
R13 is higher than the direct from region R1. This is so since
the contribution of the ocean signal, mostly noisy, is higher in re-
gion R1 than in the subregions. Standard NDVI images are not
usually tuned to give a reliable ocean characterization. In fact, for
vegetation studies, the ocean signal is generally filtered out [21].
Theseresults ledustoconcludethat thevaluesofaveragedfrom
regions R2 to R13 are more likely to characterize the spatial co-
herence of the global image, since they reduced water noise con-
tributions. Moreover, the discrepancy shown between thes for
the maximum NDVI composite (VI) with partial and full atmo-
spheric correction (A1 and A3, respectively) is also explained by
noise contributions from the ocean.

None of the temporal complexity index plots in Fig. 3 show a
clear seasonal dependency. This could be explained by the com-
plex phenologic mixture of land cover acting at this continental
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Fig. 5. Complexity index for a gray-scale NDVI-AVHRR image in a dry season.

scale. In order to study seasonal sensitivity, we have summarized
in Table III the temporal variability of for regions R3, R4, and
R5. According to Table II, these regions have different seasonal
and phenologic characteristics. Region R3, which includes the
Sahel, regularly shows monsoon summer rainfall seasonality. R4
is a mixture of wooded and grassland, mostly dry, with no clear
wet seasonality.R5 on the otherhand, includes adeciduous forest
landcoverwith fewrainsduringNovember–February. Inall these
cases, region R3 shows highervalues than R4 and R5. This
should be so, since the Sahel presents a rich vegetation signal and
the NDVI has been shown to well characterize this land cover
[37], [38]. Table III makes clear the negative correlation between
the complexity index and wet seasonal periods. In region R3, the
“summer” rainfallseasonality isverywell identifiedbythelowest
complexity index (values underlined). In the other regions, the
lowest values go well with the expected dry season periods of
November to February.

Table III also shows clearly that VI compositing with full
A3 atmospheric correction is the method with highest spatial
coherence in all regions and most of the seasons (values
bolded, column NDVI-A3). Only during the period from
July to September does NDVI compositing with partial A1
atmospheric correction present an anomalous highestvalue
of 0.30 for region R5. During the same period and in the same
region, NDVI with full A3 atmospheric correction has the
second highest value of 0.28. To find out potential causes
for this anomalous case and to characterize regions by its

spatial coherence, Fig. 4 presents the temporal variability of
the complexity index for the NDVI compositing with A0, A1,
and A3 atmospheric correction methods in all 12 subregions
(R2–R13). Region R2 presents nonseasonal patterns and is
similar to region R1. It has a complex land cover mixture.
However, R2 will have higher values than R1 due to a lower
noise contamination from the ocean. As explained earlier,
regions R3 and R8, which are subregions of the Sahel, present
the natural drop in during the “summer” rainfall season.
Although region R9 has similar phenologic and climatic char-
acteristics as region R8, interestingly, it shows highvalues.
There is not a clear explanation other than the change of rainfall
gradient (see Table II). The characteristics of the complexity
index for R4 seems to be explained by the mixture of its two
dominant classes (a dry and wet wooded grassland) that are
very well represented by region R10. An erratic behavior in
the complexity index at the beginning of the year is found in
region R5. This is mainly due to the similar behavior shown by
its dominant landcover (region R12). Among all regions, R5,
R12, and R13 possess the most unstable characterization by the
complexity index. This is perhaps because of the mixture of
grassland and savanna during the dry season. In fact, Nicholson
et al. [26] found that the southern Africa savanna has a longer
rainy season than the Sahelian region but with comparable
annual rainfall amounts. Their study found that while rainfall
reaches approximately 170 to 190 mm in three months in
region R12, it barely reaches 100 mm per month in region
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Fig. 6. Complexity index for a gray-scale NDVI-AVHRR image in a rainy season.

R13. In both regions, however, rainfall continues intermittently
throughout the dry season. This contrast could be explained by
the nature of the rain-bearing systems affecting southern Africa
[26]. This is manifested in the high variance of the complexity
index for region R5 (see Table III). The desert regions, R6 and
R7, show stable values with nonseasonal pattern. Region
R11, part of the equatorial forest with year round rains, has
consistently one of the lowest values between the regions.
Specifically, during May and October, the complexity index
falls to its lowest values. During this period, the likelihood of
cloud-free images for that region is low.

Figs. 5 and 6 show the differences in spatial coherence be-
tween images during dry season and when cloud contamina-
tion is reduced. Although the maximum NDVI composite re-
duces the cloud contamination [4], the spatial coherence is lower
when we have fewer useful days in the composite. These figures
support the results outlined in Section II: an image with less
spatial coherence will require more wavelet coefficients than a
smoother image to get a comparable approximation. Using the
highest 5% of the wavelet coefficients, we have better approx-
imation for the NDVI image taken from a dry season (Fig. 5)
than the one taken from the rainy season (Fig. 6).

IV. DISCUSSION ANDCONCLUSIONS

We examined the role of harmonic analysis in characterizing
the spatial coherence of an image in terms of smoothness
membership in Besov spaces. The estimates of the complexity

index are consistent with visual evaluation and with the physics
of the image collection process. We have also established the
framework of Besov space for characterizing quantitatively
the quality of various compositing and atmospheric correction
techniques. In particular, we showed that the maximum NDVI
with Rayleigh, ozone, water vapor correction provides the
highest spatial coherence among the other techniques explored.
The complexity index ranges from 0.1 to 0.5 and agrees well
with phenologic characterizations of regional land cover. The
complexity index is regionally dependent and is higher for
images taken from dry periods than from wet periods, where
residual cloudiness interference is more likely to appear.

Our results allow the development of quality characteriza-
tions for remotely sensed data. The complexity index assesses
the overall quality of the image. It also provides a diagnosis of
potential local problems such as contamination by clouds.

APPENDIX

HILBERT SPACE

We briefly review the following elementary mathematical
concepts of linear operators and Hilbert spaces necessary to
introduce Besov spaces.

• The norm of a nonzero vector in a vector space is
positive and satisfies:

1) triangle inequality: ;
2) scaling property: .
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There are many possible choices of such norm. We focus
on the use of norms with as error metrics.
These norms are defined by

When , we have mean squared error (MSE) metric.
• A sequence is a Cauchy sequence if for any

, there is an such that , .
• A vector space is completeif every Cauchy sequence

in converges to an element of.
• A Banach spaceis a vector space , which has a norm

and is complete.
• A Hilbert space is a Banach space with a norm that can

be expressed as an inner product. In this case, theinner
product of two vectors in satisfies

1) Linearity with respect to its first argument

2) Hermitian symmetry , where
means complex conjugate.

3) Positiveness: and if and only
if .

For example, the inner product between two vectors can
be defined by

and it corresponds to an norm:
.

• The Besov space is the collection of functions
with finite norm ( ) that are defined on the

unit square and have a common “smooth-
ness” for and . The
smoothness of the Besov space is reflected in its norm

. The norm measures “derivatives”
of the function and it is given by

where ,
, and [16].
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